ATTACHMENT J12

Salt Lake City IAP (ANG), Utah Electric Distribution System

TABLE OF CONTENTS

SALT LAKE CITY IAP (ANG), UTAH ELECTRIC DISTRIBUTION SYSTEM	I
J12 SALT LAKE CITY IAP (ANG), UTAH ELECTRIC DISTRIBUTION SYSTEM	
J12.1 SALT LAKE CITY IAP (ANG), UTAH OVERVIEW	
J12.2 ELECTRIC DISTRIBUTION SYSTEM DESCRIPTION	
J12.2.1 Electric Distribution System Fixed Equipment Inventory	
J12.2.1.2 Inventory	
J12.2.2 Electric Distribution System Non-Fixed Equipment and Specialized Tools	4
J12.2.3 Electric Distribution System Manuals, Drawings, and Records	
J12.3 SPECIFIC SERVICE REQUIREMENTS	5
J12.4 CURRENT SERVICE ARRANGEMENT	5
J12.5 SECONDARY METERING	
J12.5.1 Existing Secondary Meters	
J12.5.2 Required New Secondary Meters	
J12.6 MONTHLY SUBMITTALS	
J12.7 ENERGY SAVING PROJECTS	
J12.8 SERVICE AREA	
J12.10 SPECIFIC TRANSITION REQUIREMENTS	
J12.11 GOVERNMENT RECOGNIZED SYSTEM DEFICIENCIES	88
VIZ.II GOVERNALA RECOGNIZED DIGIEM DELICIENCED.	
List of Tables	
Fixed Inventory	2
Spare Parts	
Specialized Vehicles and Tools	
Manuals, Drawings, and Records	
Existing Secondary Meters	
New Secondary Meters	
Service Connections and Disconnections	
System Deficiencies	

J12 Salt Lake City IAP (ANG), Utah Electric Distribution System

J12.1 Salt Lake City IAP (ANG), Utah Overview

Salt Lake City (SLC) is located in north central Utah immediately southeast of the Great Salt Lake. The Utah Air National Base (UTANG) lies within the boundary of the Salt Lake City International Airport (SLCIAP) along a portion of the eastern segment of the SLCIAP. The airport is owned by the city and base property is leased. The UTANG Base is home to the 151st Air Refueling Wing and occupies approximately 135 acres of the SLCIAP's five square miles of land. Their mission is to organize, train, and equip KC-135 aircraft personnel to provide in-flight refueling support on a worldwide basis and be prepared to respond to state emergencies and natural disasters. The base has a total 63 buildings: 3 services, 13 administrative, and 47 industrial buildings, amounting to approximately 407,000 square feet. There are 255 full-time personnel and 1,343 personnel during the once a month unit training assemblies. There are several new construction and demolition projects in progress or in the planning stages to modernize the base and remove vintage 1943 buildings. These projects include construction of a composite operations and training/squadron operations complex, an aircraft maintenance facility; a base supply complex and a new fire station: When all construction is complete the base will net approximately 99,759 square feet of new facility space with no increase of personnel.

J12.2 Electric Distribution System Description

J12.2.1 Electric Distribution System Fixed Equipment Inventory

The Salt Lake City IAP (ANG), Utah electric distribution system consists of all appurtenances physically connected to the distribution system from the point in which the distribution system enters the Installation and Government ownership currently starts to the point of demarcation, defined by the Right of Way. The system may include, but is not limited to, transformers, circuits, ductbanks, vaults, meters, and switches. The actual inventory of items sold will be in the bill of sale at the time the system is transferred. The following description and inventory is included to provide the Contractor with a general understanding of the size and configuration of the distribution system. The Government makes no representation that the inventory is accurate. The Contractor shall base its proposal on site inspections, information in the technical library, other pertinent information, and to a lesser degree the following description and inventory. Under no circumstances shall the Contractor be entitled to any service charge adjustments based on the accuracy of the following description and inventory.

Specifically excluded from the electric distribution system privatization are:

- Airfield Lighting
- Parking Lot Lights
- Street Lights
- Ballfield Lights

• An overhead electrical circuit runs approximately 1650 LF and parallel to a drainage canal from the airport's pump house station on the west side of the base, along the south side of 5th Street and under Tanker Way Street to an oil water separator unit at the east side of the base. There are 5 wooden utility poles and one service drop to a meter on a pole behind the base's RV storage lot. The meter is for the oil water separator unit. The poles, wiring, and meter are owned by the airport authority. Although this system traverses UTANG leased property, it is not physically connected to the UTANG electrical system and is not part of this privatization effort.

J12.2.1.1 Description

Electrical power for Salt Lake City IAP (ANG) enters the base at a single location underground near the south gate. The nominal system voltage is 12470Y/7200 volts. There are approximately 14,900 linear feet of circuits that are 100% underground and in duct banks. Configuration is primarily delta connected with some wye connected on the secondary feeds. Electric power is distributed by an underground branch system that can be controlled by 10 pad mounted sectionalized switches. There are 7 pad mounted single phase 50 kVA transformers, 19 three phase transformers ranging from 75 to 1000 kVA and 35 electric meters. The ductbanks are buried at an average depth of three feet with warning tape buried approximately 12" below surface grade. There are no substations or unique components associated with this system. Base personnel indicate the system capacity is adequate to meet current and future demands.

J12.2.1.2 Inventory

Table 1 provides a general listing of the major electric distribution system fixed assets for the Salt Lake City IAP (ANG), Utah electric distribution system included in the sale.

TABLE 1Fixed Inventory
Electric Distribution System Salt Lake City IAP (ANG), Utah

Item	Size	Quantity	Unit	Approximate Year of Construction
Underground Circuits	AWG	Length (ft)		_
3 ph, 4w, 15000v in conduit	#500	500	LF	1970
3 ph, 4w, 15000v in conduit	#4	500	LF	1985
3 ph, 4w, 15000v in conduit	#1	350	LF	1989
3 ph, 4w, 15000v in conduit	#1	890	LF	1991
3 ph, 4w, 15000v in conduit	#1	10,160	LF	1997
3 ph, 4w, 15000v in conduit	#2	2500	LF	1997
Ductbanks				
1 EA 2" PVC in concrete (Note)	8"x8"	500	LF	1970
1 EA 2" PVC in concrete (Note)	8"x8"	500	LF	1985
1 EA 4" PVC in concrete (Note)	10"x 10"	350	LF	1989
1 EA 4" PVC in concrete (Note)	10"x 10"	890	LF	1991

Item	Size	Quantity	Unit	Approximate Year of Construction
1 EA 4" PVC in concrete (Note)	10"x 10"	10,160	LF	1997
1 EA 2" PVC in concrete (Note)	8"x8"	2500	LF	1997
Transformers	Nom kVA			
3 phase, pad mounted	75	1	EA	1988
3 phase, pad mounted	75	1	EA	1997
3 phase, pad mounted	75	1	EA	1999
3 phase, pad mounted	112.5	3	EA	1997
3 phase, pad mounted	150	1	EA	1988
3 phase, pad mounted	150	1	EA	1993
3 phase, pad mounted	300	1	EA	1973
3 phase, pad mounted	300	1	EA	1979
3 phase, pad mounted	300	1	EA	1991
3 phase, pad mounted	300	1	EA	1993
3 phase, pad mounted	300	2	EA	1994
3 phase, pad mounted	300	4	EA	1997
3 phase, pad mounted	1000	1	EA	1971
1 phase, pad mounted	50	1	EA	1990
1 phase, pad mounted	50	1	EA	1992
1 phase, pad mounted	50	1	EA	1993
1 phase, pad mounted	50	1	EA	1994
1 phase, pad mounted	50	1	EA	1996
1 phase, pad mounted	50	2	EA	1997
Switches Underground	Type			
Medium voltage S&C Model PMS12, 200amp, 3 pole	3 way	10	EA	1997
Sectionalizer, 2'x4'x2'	4 way	2	EA	1989
Sectionalizer, 2'x4'x2'	3 way	3	EA	1989
Sectionalizer, 2'x4'x2'	3 way	1	EA	1998
Electric Meters	3 Phase	35	EA	

Item	Size	Quantity	Unit	Approximate Year of Construction
Vaults	Type			
Manholes, Pre-cast concrete	6'x6'x6'	1	EA	1997
Handholds, Pre-cast concrete	3'x3'x3'	2	EA	1997

Notes:

PVC = Polyvinyl Chloride AWG = American Wire Gauge

EA = each LF = linear feet

Nom kVA = nominal kilovolt-amperes

v = volts

Note: PVC conduit encased in concrete, colored red and covered with 3" of sand with warning tape buried approximately

12" below surface grade.

J12.2.2 Electric Distribution System Non-Fixed Equipment and Specialized Tools

Table 2 lists other ancillary equipment (spare parts) and **Table 3** lists specialized vehicles and tools included in the purchase. Offerors shall field verify all equipment, vehicles, and tools prior to submitting a bid. Offerors shall make their own determination of the adequacy of all equipment, vehicles, and tools.

TABLE 2 Spare Parts Electric Distribution System Salt Lake City IAP (ANG), Utah

Qty	Item	Make/Model	Description	Remarks
None				

TABLE 3

Specialized Vehicles and Tools

Electric Distribution System Salt Lake City IAP (ANG), Utah

Description	Quantity	Location	Maker
None			

J12.2.3 Electric Distribution System Manuals, Drawings, and Records

Table 4 lists the manuals, drawings, and records that will be transferred with the system.

TABLE 4
Manuals, Drawings, and Records
Electric Distribution System Salt Lake City IAP (ANG), Utah

Qty	Item Description	Remarks
1	Electrical Utility System Maps (electronic copy)	AutoCAD Release Version 2000

J12.3 Specific Service Requirements

The service requirements for the Salt Lake City IAP (ANG), Utah electric distribution system are as defined in the Section C Description/Specifications/Work Statement.

J12.4 Current Service Arrangement

• Provider Name: Utah Power and Light

• Average Annual Usage: 3,645,355 kWh (1999)

Maximum Monthly Use: 469,200 kWhMinimum Monthly Use: 212,000 kWh

• Peak demand: 1,336 kW

J12.5 Secondary Metering

J12.5.1 Existing Secondary Meters

Table 5 provides a listing of the existing (at the time of contract award) secondary meters that will be transferred to the Contractor. The Contractor shall provide meter readings for all secondary meters IAW Paragraph C.3 and J12.6 below.

TABLE 5
Existing Secondary Meters
Electric Distribution System Salt Lake City IAP (ANG), Utah

Meter Location	Meter Description
Building or Facility Number	Example: 3 phase or 1 phase, kWh
1	3 phase kWh
2	3 phase kWh
3	3 phase kWh
3 (Pad mounted transformer mounted)	3 phase kWh
4	3 phase kWh

7	3 phase kWh
10	3 phase kWh
19	3 phase kWh
23	3 phase kWh
25	3 phase kWh
37	3 phase kWh
40	3 phase kWh
45	3 phase kWh
50	3 phase kWh
106	3 phase kWh
112	3 phase kWh
208	3 phase kWh
215	3 phase kWh
218	3 phase kWh
301	3 phase kWh
302	3 phase kWh
303	3 phase kWh
408	3 phase kWh
1522	3 phase kWh
1604	3 phase kWh
1604 (Pad mounted transformer mounted)	3 phase kWh
1605	3 phase kWh
1624	3 phase kWh
1628	3 phase kWh
1708	3 phase kWh
1709	3 phase kWh
1709 (Pad mounted transformer mounted)	3 phase kWh
1713	3 phase kWh
(1) North side of Radar Site (no facility #)	3 phase kWh
(1) South side of Radar Site (no facility#)	3 phase kWh

J12.5.2 Required New Secondary Meters

The Contractor shall install and calibrate new secondary meters as listed in **Table 6**. New secondary meters shall be installed IAW Paragraph C.13 Transition Plan. After installation, the Contractor shall maintain and read these meters IAW Paragraphs C.3 and J12.6 below.

Electric Distribution System Salt Lake City IAP (ANG), Utah

	Meter Location	Meter Description
None		

J12.6 Monthly Submittals

The Contractor shall provide the Government monthly submittals for the following:

- 1. Invoice (IAW G.2). The Contractor's monthly invoice shall be presented in a format proposed by the Contractor and accepted by the Contracting Officer. Invoices shall be submitted by the 25th of each month for the previous month. Invoices shall be submitted to the person identified at time of contract award.
- 2. Outage Report. The Contractor's monthly outage report will be prepared in the format proposed by the Contractor and accepted by the Contracting Officer. Outage reports shall be submitted by the 25th of each month for the previous month. Outage reports shall be submitted to the person identified at time of contract award.
- 3. Meter Reading Report. The monthly meter reading report shall show the current and previous month readings for all secondary meters. The Contractor's monthly meter reading report will be prepared in the format proposed by the Contractor and accepted by the Contracting Officer. Meter reading reports shall be submitted by the 15th of each month for the previous month. Meter reading reports shall be submitted to the person identified at time of contract award.
- 4. System Efficiency Report. If required by Paragraph C.3, the Contractor shall submit a system efficiency report in a format proposed by the Contractor and accepted by the Contracting Officer. System efficiency reports shall be submitted by the 25th of each month for the previous month. System efficiency reports shall be submitted to the person identified at time of contract award.

J12.7 Energy Saving Projects

IAW Paragraph C.3 Requirement, the following projects have been implemented on the distribution system by the Government for energy conservation purposes. None

J12.8 Service Area

IAW Paragraph C.4 Service Area, the service area is defined as all areas within the Salt Lake City IAP (ANG), Utah boundaries.

J12.9 Off-Installation Sites

No off-installation sites are included in the sale of the Salt Lake City IAP (ANG), Utah electric distribution system.

J12.10 Specific Transition Requirements

IAW Paragraph C.13 Transition Plan, **Table 7** provides a listing of service connections and disconnections required upon transfer.

TABLE 7

Service Connections and Disconnections Electric Distribution System Salt Lake City IAP (ANG), Utah

	Location	Description
None		

J12.11 Government Recognized System Deficiencies

Table 8 provides a listing of system improvements that the Government has planned. The Government recognizes these improvement projects as representing current deficiencies associated with the Salt Lake City IAP (ANG), Utah electric distribution system. If the system is sold, the Government will not accomplish these planned improvements. The Contractor shall make a determination as to its actual need to accomplish and the timing of any and all such planned improvements. Capital upgrade projects shall be proposed through the Capital Upgrades and Renewals and Replacements Plan process and will be recovered through Schedule L-3. Renewal and replacement projects will be recovered through Sub-CLIN AB.

TABLE 8

System Deficiencies

Electric Distribution System Salt Lake City IAP (ANG), Utah

Project Location	Project Description
None	